

Fig. 4. The sonic velocity c_{T} in liquid Hg as a function of pressure at several temperatures.
T is absolute temperature, α is volume thermal-expansion coefficient, ρ is density, and C_{P} is specific heat at constant pressure. Since

$$
\begin{equation*}
\beta_{T}=-(1 / V)(\partial V / \partial P)_{T}=(1 / \rho)(\partial \rho / \partial P)_{T} \tag{5}
\end{equation*}
$$

where V is volume, it follows from Eq. (3) that

$$
\begin{equation*}
(\partial \rho / \partial P)_{T}=\left(1 / c_{T}^{2}\right)+\left(T \alpha^{2} / C_{P}\right) . \tag{6}
\end{equation*}
$$

Therefore, on integration with respect to P,

$$
\begin{equation*}
\rho_{P, T}=\rho_{o, T}+\int_{1}^{P} \frac{1}{C_{T}^{2}} d P+T \int_{1}^{P} \frac{\alpha^{2}}{C_{P}} d P \tag{7}
\end{equation*}
$$

where $\rho_{0, T}$ is density at 1 atm and T, and $\rho_{P, T}$ is density at P and T. Evaluation of the two integrals over a range of T yields ρ as a function of P and T. The integral of $1 / c_{T}{ }^{2}$ at a given temperature can be evaluated directly from the least-squares velocity curves, using numerical integration, under the assumption that $1 / \mathrm{Cr}^{2}$ varies linearly for small $\Delta P=P_{2}-P_{1}$. To evaluate the second integral, two additional relations can be used, viz.,

$$
\begin{equation*}
\left(\partial \alpha / \partial_{P}\right)_{T}=-\left(\partial \beta_{T} / \partial T\right)_{P} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\partial C_{P} / \partial P\right)_{T}=-(T / \rho)\left[(\partial \alpha / \partial T)_{P}+\alpha^{2}\right] . \tag{9}
\end{equation*}
$$

If β_{T} is known as a function of T at $P=P_{1}$, the initial slope of the α-vs- P curve may be determined for any temperature. Then, over the interval $\Delta P=P_{2}-P_{1}$, the change of α can be approximated by
$\alpha_{P}=\left(\partial \alpha / \partial_{P}\right)_{T, P_{1}}\left(P-P_{1}\right)+\alpha_{P_{1}}, \quad P_{1} \leq P \leq P_{2}$.
If α vs T is known at P_{1}, α vs T at P_{2} may be found from (10). Therefore, in (9), $(\partial \alpha / \partial T)_{P}$ can be expressed as
$\left(\frac{\partial \alpha}{\partial T}\right)_{P}=\left[\frac{(\partial \alpha / \partial T)_{P_{2}}-(\partial \alpha / \partial T)_{P_{1}}}{\Delta P}\right]\left(P-P_{1}\right)+\left(\frac{\partial \alpha}{\partial T}\right)_{P_{1}}$,

$$
\begin{equation*}
P_{1} \leq P \leq P_{2} \tag{11}
\end{equation*}
$$

Using (11) and the square of (10), Eq. (9) may be integrated analytically to find ΔC_{P} if ρ is assumed constant over ΔP. This produces a negligible error if ΔP is small. On performing the integration, ΔC_{P} is found to be very small so that C_{P} may be assumed constant for the integration in (7). Only the integral of α^{2} at each temperature needs then to be evaluated. This can be found by using the square of (10) and integrating analytically. The density at $P_{2}, \rho_{P_{2}, T}$ is therefore determined.

It is apparent that in the course of calculating $\rho_{P_{2}, T}$ both C_{P} and α have been determined as a function of T at P_{2}. Clearly, then, β_{T} may be calculated as a function of T at P_{2} from Eq. (4). It follows that the calculation may be now repeated starting with the integration of $1 / c_{T^{2}}$ over the interval $\Delta P=P_{3}-P_{2}$ and the determination of $(\partial \alpha / \partial T)_{P}$ at P_{2} from Eq. (8). By continual repetition of these calculations all the quantities $\beta_{T}, \alpha, C_{P}, \rho$, and $\beta_{\text {ad }}$ may be determined as a function of temperature and pressure. In the experiments described above the change of velocity with

Table IV. One-atmosphere input data to the compression calculation.

Temperature, $t\left({ }^{\circ} \mathrm{C}\right)$	21.9°	40.5°	52.9°
Density, $\rho\left(\mathrm{g} / \mathrm{cm}^{3}\right)^{\mathrm{a}}$	13.54122	13.49573	13.46551
Thermal-expansion coefficient, α $\left({ }^{\circ} \mathrm{C}^{-1} \times 10^{4}\right)^{\mathrm{b}}$	1.81069	1.80825	1.80699
Specific heat, C_{P} $\left(\text { (ergs } / \mathrm{g} \cdot \mathrm{deg}^{\circ} \times 10^{-6}\right)^{\mathrm{c}}$	1.390	1.385	1.382
Sonic velocity C_{T} $(\mathrm{~m} / \mathrm{sec})^{\mathrm{d}}$	1450.1	1441.5	1435.8

${ }^{\text {a }}$ Reference 36.
${ }^{5}$ Reference 35.
${ }^{\circ}$ Reference 34.
${ }^{d}$ Reference 27

